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Abstract

The problem of the process of coupled diffusion and reaction in catalyst pellets is considered for the case of second and

half order reactions. The Adomian decomposition method is used to solve the non-linear model. For the second, half and first order reac-

tions, analytical approximate solutions are obtained. The variation of reactant concentration in the catalyst pellet and the effectiveness fac-
tors at $ < 10 are determined and compared with those by the BAND’s finite difference numerical method developed by Newman. At low-
er values of $, the decomposition solution with 3 terms gives satisfactory agreement with the numerical solution; at higher values of ¢, as

the term number in the decomposition method is increased, an acceptable agreement between the two methods is achieved. In general, the

solution with 6 terms gives a satisfactory agreement.

Keywords: Adomian decomposition method, nonlinear, analytical approximate solution, effectiveness factor.

Nonlinear problems that frequently arise in
chemical engineering can be solved only by the nu-
merical method. However, by using the numerical
method, we can only obtain discontinuous values and
not analyze it mathematically. Furthermore, the nu-
merical method does not always converge when there
is a large change in reaction rate. From the 1980s to
the 1990s, Adomian'!! had developed the decomposi-
tion method for solving the deterministic or stochastic
differential equations. Cherrault?) proved the conver-
gence of the solutions obtained with this method. In
general, satisfactory result can be reached by the ap-
proximate solution that consists of the first few terms
of the solution series. The Adomian decomposition
method has been used to solve some mathematical

[3], but there has
been no report of its application to chemical engineer-

problems in science and engineering

ing so far.

The nonlinear problems in chemical reaction en-
gineering come from the relationship between the re-
action rate and kinetic parameters, such as concentra-
tion, temperature etc. In this paper, Adomian de-
composition method is introduced as a new alternate
one to solve the non-linear model of diffusion and re-
action in porous catalysts.

1 The model of diffusion and reaction

The model for the process of coupled diffusion
and reaction in the porous catalysts is a typical one in
chemical reaction engineering. In general, a mass
balance for per unit volume catalyst gives'*!

% —V.D.Ve +R(), (1)
where ¢ is time, ¢’ the chemical reactant concentra-
tion, R(c¢”) the rate of reaction per unit volume, D,
the effective diffusion coefficient. For the porous slab
catalyst pellet, the pellet is assumed to be infinite in
both y and =z directions, giving a large plane sheet
with diffusion through the thickness of the sheet. At
a steady state, we also assume that the variation of
the concentrations in the y and z directions is negligi-

ble, so we have

2 p
d°c _Rfczzo, (2)

dl‘ 2 D e
where z” is diffusion distance. The boundary condi-

tions are
=0, -D3S -y, 3)
x
z' =1, ¢ = co (4)

where [ is distance from pellet core. Eq. (2) is a
boundary-value problem for ordinary differential equa-
tion. The reaction considered here is nth order irre-
versible reaction, i.e. R(c’) = kc", where k is re-
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action rate constant. In order to obtain a generalized
solution under isothermal condition, dimensionless e-

’ ’

. . . T c
quations are derived by letting = = T T
0

x is dimensionless distance, ¢ the dimensionless reac-

, where

tant concentration.

2
5—9%":0, (5)
xz =0, —DSS_QZO, (6)
r=1, ¢=1, (7)
PRy !

—~ —. The group

2
1 . o . l
. —1 is a characteristic time for reaction, a char-

kCO De

acteristic time for diffusion. The Thiele modulus thus
represents the ratio of the two characteristic times and
measures the relative importance of diffusion and re-
action in the coupled process.

In chemical reaction engineering the effectiveness
factor of 7 is defined as the average reaction rate,
i.e. with diffusion, divided by the reaction rate that
is evaluated at the boundary condition (at = =1).
For the planar catalyst, the effectiveness factor is giv-
en

At lower values of ¢ (<0.5), p—1, which
means that the rate of reaction is relatively uninflu-
enced by diffusion; at higher values of ¢ (>5), >
1/$, that the reactant concentration in the pore drops
rapidly, that is, the rate of reaction is strongly influ-
enced by diffusion.

2 The solution by the decomposition method

In general, a differential equation can be ex-
pressed as an operator equation,
Fy = g(z). (9)
As the first step of decomposition, according to Ado-
mian decomposition method, a deterministic nonlinear
differential equation can be written as
Fy: Ly+ L'y + Ny = g(z), (10)
where L is the highest order linear differential opera-
tor, L’ the remainder of the linear operator, N the
nonlinear operator of the function of y, and g(z) a
forcing term. Operating Eq. (10) with L™!, we
have

L 'Ly=L"(x)-L'Ly - L 'Ny, (11)

where L "!is an inverse operator and is a finite inte-
gral operator, simply symbolizes n-fold integration
from 0 to x. For a second order differential equation

_ & L_IZJJ: (g{z)—L'y— Ny) dxdxr.

Cdz?
(12)
As the second step of decomposition, the solution of
equation is expressed by a sum of partial solutions,
the nonlinear term Ny is approached with Adomian
polynomial, hence we have

v = 3o

where A,, is the Adomian polynomial, m the term

Ny = f(y) = D A, (13)

m=0

number of Adomian polynomial series. According to

(1]

Adomian decomposition™', the expressions for A,

Ay, Ay A, can be written as
Ag = ho(yo) = f(y0),

Ay = hi(yo)yis

1
Ay = E[hz(yo)yf +2h1(30)y21, (14)
A,

-
m

dcm)f(y) |y:y0, f(y) is a non-
linear function of y. Adomian partial solutions yy,

Y1 Y25 Ym are

where h,,(yg) = ( d

Yyo = const,

Y1 = ¢2L_1A09
_ 27 -1

_')1'2 - ¢ L Al’ (15)

ym = $7L7A, 1,

Thus the approximate solution of ¥ with (m + 1)
terms can be expressed as

y = z i
i=0
yot $°L 1A+ #°L 1A+ + LA, .
(16)

For an nth order irreversible reaction, under the
isothermal condition, we assume the effective diffu-
sion coefficient D. to be a constant, thus Adomian
operator equation (5) can be written as

Le = $*Ne. (17)
Operating with the inverse operation L !, we have
¢ = $*L7'Ne. (18)

According to the procedure above, Adomian polyno-
mial A,, and partial solution ¢,, of Eq.(5) can be di-
rectly written as



Progress in Natural Science Vol.13 No.7 2003

507

Ag = cps

(1 = yr#ichad,

Ay = 5y #2eda

cy = ﬁsﬁ“cﬁ"‘l 4,

A, = 4n24? 3n¢463n-214;

o = 471267?3n¢663n—216’

A, = 34n° ~ 663!712 +30m g6 43 6,

= 3403 - 63!712 + 30n¢363,,—318’

A, = 496n* — 1554n3ST 16897% — 630n §ECSm4 L8,
(19)

3 Analytical approximate solutions
Let the approximate solution of ¢ be 8,4y, 4,

Om+1,n= E ¢ms where m + 1 is the term number
0

of approximate solution, n the reaction order. We
can now form successive approximations 8, +1,, =

m

E ¢,n a8 m increases. In this paper, we will first
0

derive the approximate solution for linear case (the
first order reaction) and compare it with its analytical
solution, and then write the approximate solutions for
the second and half order reactions. The analytical so-
lutions of the equations by decomposition method will
be compared with numerical solutions calculated by
Newman’s BAND program.

3.1 The linear case

For the first order reaction (n = 1), the equa-
tion of model is linear. According to Eq. (19), we
have

Cm = (2m)'¢2 m

mZ::lcm Co[l + MZZI ——(2;)! ¢2mcox2'"]
cocosh($x).

(20)

Substituting the boundary condition Eqgs. (6)

_ cosh($x)

and (7) into Eq. (20), we can obtain ¢ = cosh($) ’

which is the analytical solution of the first order reaction.
3.2 The nonlinear case

The general approximate solutions for nth order
reactions are

9m+1,n=60+61+62+”'+6m
2 —
=cotoy ¢ 6012+_¢4 "

n —3n 3n-2
+__¢6C0n 1,6

6!
34n° - 6312+ 30 -
+ 7 S'n n¢863 3_1'8
N 496n* — 155471; J. 1689n> — 630n Br0 54410
+to,,. (21)

3.3 The approximate solution

3.3.1 The expressions of approximate solutions
with 2 and 3 terms
with 2 and 3 terms denoted as 8, , and 83, , respec-
tively are obtained by taking the first two and three
terms from Eq. (21).
obtained by letting Eq. (21) satisfy the condition x =
1, ¢ =1.
O +1, » with 2 and 3 terms for the second and half or-

The formulas of solutions

cp 18 an integration constant,
co and the approximate solution x =1,

der reactions are shown in Tables 1 and 2.

Table 1. cg and the formulas of 8,4, , with 2 terms
n co Om+1,n
1 - 1
1 (‘0:(1+5¢2) 02_1260(1+E‘!‘¢212)
2
2 Coz—\/1+2¢1 B2.2= co+ ¢2601

¢2

+_¢2 0512

0.5 c0=%(«/ $*+ 16 — $2)? 02,05=

Table 2.

¢o and the formulas of 8,44, , with 3 terms

n co Omt1,n

1 1 B 1 1
1 £0=(1+?!‘¢2+H¢4) 03'1=60(1+F¢212+F¢414)

N R

05 o= [ [B -0 | mnsma Froga o

2 443
03,2=co+ _¢26012 + F¢4[014

3.3.2 The approximate solution with more than 4
terms co in the approximate solution with less
than 4 terms can be analytically obtained by applying
(5] Those in the approximate

solutions with more than 4 terms have to be calculated

the boundary condition

with a numerical method. The approximate solution
with 6 terms is written as
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061 =col 1+ i‘ﬁzxz + L¢41‘4 + égﬁ%"
i,sbsxs ol (22)
06,2 =co + ¢2601 + —¢4c(3)x4 1—0¢6c316
¢8 1100()'0¢10 610 (23)
06,05 = co ¢2L3 ‘x4 7% 4‘ $icox
) 2 ><16' T ST
10! e, (24)

3.4 Effectiveness factors of the catalyst

The general solution of the effectiveness factor
for nth order reaction can be obtained from Eqgs. (8)
and (21), that is

( d0m+1 n )
77m+1.n ¢2 dl‘ N

=1

2
22-1  4n° —3n 3n-2
=cp + —952 e 4954(0"

51

34n> — 632% + 30n n-3
+ 7! ¢6C8

496n* — 1554n° + 16897 — 6307 ;5 54-4
+ 9‘ ¢ CO

de,, )
+ - ( . 25
¢2 =1 ( )

Eq. (25) shows that the number of terms in the solu-
tion of effectiveness factor is one less than that of the
dimensionless concentration solution.

For the first order reaction (n =1), the approx-
imate solution 73,; of the effectiveness factor with 3

terms is
-1
+%¢Zc(}:( +2L' 2+—¢4) (1+3l'¢2),
(26)

N3,1= Co

For the second order reaction (n =2)

3 3 3
8 12 2 $? 12 2
s (V¢6+¢4 ﬁ) it P)

(27)
For the half order reaction (n =0.5)
4 4

713y0-5—Z( szf +16 — ¢° +¢—- (28)

Similarly, the approximate solutions of the effec-
tiveness factor with 4, 5, 6 terms for the 1, 2 and
0.5 order reactions can be obtained with Eq. (25).

4 Discussion

The reactant concentration in the catalyst pellet
and the effectiveness factors as a function of reaction
order and Thiele modulus have been calculated by us-
ing the decomposition solution and compared with the
numerical solution by Newman’ s BAND pro-
gram[6’7] . The BAND program has been proven to be
very effective for solving non-linear problems of diffu-

. . . . 7
sion and reaction in electrochemical systems[ 1,

4.1 Distribution of reactant concentration

Fig. 1 shows the variation of reactant dimen-
sionless concentration in the catalyst slab for different
reaction orders as a function of Thiele modulus.

For the first order reaction, Fig.1(a) presents
the typical trend of variation of concentration. The
error between the analytical and numerical results for
all data is within 0.0001. The values predicted by de-
composition method are in agreement with those by
the analytical solution. At a lower value of $(<1),
the maximum error is only 0. 0188, the relative error
is 2.68%, the decomposition solution with 2 terms is
good enough. Furthermore, the solution with 3 terms
is overlapped with analytical solution. At a higher
value of ¢ (=3),

rate of reaction, a large error arises, however, with

diffusion strongly influences the

the increase in the number of terms in decomposition
solution, a reasonable agreement with the numerical
solution is achieved. As the number of terms reaches
6, the de-composition solution yields satisfactory a-
greement with the analytical solution, for example,
at $ =5, the maximum error is 0.0026, relative error

is 0.427% .

Fig.1(b) and (c) show the variation of concen-
tration for the second and half order reactions respec-
tively. In the case of these reactions, there is no ana-
lytical solution to the non-linear model, so compar-
isons with a numerical method can only be done. For
the second order reaction, there is a good agreement
(the overlapping of the two curves shown in Fig. 1
(b)) between the decomposition solution with 3
terms and numerical one at ¢ = 1. 0. With the in-
creasing in Thiele modulus, the difference between

In the case of ¢ >5, the

solution with 6 terms is required to achieve reasonable

the two solutions increases.

agreement, for example, at $ =35, the maximum dif-
ference is 0. 0168, the relative difference is 3.32% .
For a half order reaction, shown as Fig. 1(c), the so-
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lution of the decomposition method gives a good a-
greement with the numerical solution at lower values
of Thiele modulus ($<C1); at higher values of ¢, ei-
ther the 3 terms or 4 terms solution gives acceptable
agreement with the numerical method. For example,
at ¢ =2, the maximum difference between the two
solutions is 0. 0288, and the relative difference is
6.01% . In the case of $ >2, since the property of
the problem to the 0.5th order reaction is so particu-
lar that the numerical solution of finite difference does

not easily converge and the decomposition solution is
not stable. As shown in Fig. 1(c), there is a phe-
nomenon that the curves of the solutions with 3 and 4
terms are at two sides of that of the numerical solu-
tion, the curve of 4 terms solution is above, but that
of 3 terms solution is under. In the case of the num-
ber of terms m +12>4, the unsteadiness of the solu-
tion of the decomposition method is more obvious. As
$ increases up to 2.5, neither the numerical nor de-
composition solution is convergent.
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Variation of dimensionless concentration as a function of Thiele modulus #. (a) 1st order reaction; (b) 2nd order reaction; (c) 0.5th or-

der reaction. ¢ 2 terms, W 3 terms, A 4 terms, O 5 terms, » 6 terms, - - - numerical solution.

It is known that cq is the value of ¢ at =z =0,

where the boundary condition is ccll_.: =0. For the cou-

pled process of diffusion-reaction, all of the formulas
of particular solutions are obtained if the ¢ is known.
It is obvious that, the stronger the non-linearity of
the problem is, the more terms in decomposition solu-
tion will be needed and that the non-linearity of this
kind of problem depends on the values of parameter ¢
and reaction order.

4.2 Relationship of effectiveness factor with ¢

Effectiveness factor is an important concept in
chemical reaction engineering. Fig.2 shows the varia-
tion of effectiveness factor for the first, second and
half order reactions as a function of Thiele modulus.
Clearly, all of the curves show the trend of a decrease
in effectiveness factor as Thiele modulus increases.

For the first order reaction (Fig.2 (a)), at low-
er values of $(<2), any decomposition solution gives
satisfactory agreement with the numerical solution.
When ¢ is above 2.5, only the solutions with more
terms (for example, m =35) get acceptable agreement
with the numerical one. For instance, when ¢ =5,
the decomposition solution with 6 terms has a differ-
ence of 0. 0020, and the relative difference is only
1.02%.

For the second order reaction (Fig.2 (b)), only
one approximate analytical solution is known so far,
which is obtained by one-term orthogonal collocation
OC!!. As can be seen, the agreement between this
approximate analytical solution with both the numeri-
cal one of finite difference and decomposition one is
poor. At lower values of $(<{2), comparing the per-
formance of the orthogonal collocation solution with
that of the decomposition one, the former is better;
however, at higher values of $ (=5), the latter is
better. The difference between the decomposition so-
lution with 3 terms and the numerical solution is e-
quivalent to that of orthogonal collocation one and nu-
merical one. For example, at ¢ =5, the difference
between the decomposition solution and the numerical
solution is 0.0695, while that of the solution by one-
term orthogonal collocation and the numerical one is
0.0646. With increasing in the number of terms in
decomposition solution, the values of the effectiveness
factor predicted by decomposition solution approach
those calculated by numerical one. As the term num-
ber reaches 6, at $ =5, comparing the decomposition
solution with the numerical one, the difference be-

tween the two is 0.0011 and the relative difference is
0.644% .

Fig.2(c) shows effectiveness factor of the half
order reaction. At lower values of $(<{1.5), the de-
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composition solution with 3 or 4 terms gives satisfac-
tory agreement with the numerical solution. Compatr-
ing the 3 terms decomposition solution with the nu-

merical one, the maximum difference is 0. 0154 and
the relative difference is 1.60% ; as =2, the two
solutions are unstable, even not convergent.

1.0 1.09
@ b0 ® (©)
55 0'8{ = 08F = 08F
: 5 5 " ~
:é 0.6} & 06k § 06l ¢ 2 terms,
o 9 v m 3 terms,
::: :)u:’ g A 4 terms
2 o4} 2 04} 2 %4 o Stems,
(o] 153 [5]
& & ocC ) x 6 terms,
M 02r 021 ) L =02 L. Numerical solution
O i eerereabe— i O - il A 1 L i
0 2 4 6 8 10 0 2 4 6 8 10 00 0.5 1.0 1.5 20
Thiele modulus ¢ Thiele modulus ¢ Thiele modulus ¢
Fig. 2. Variation of effectiveness factor as a function of Thiele modulus. (a) 1st order reaction; (b) 2nd order reaction; (c) 0.5th order reac-
tion.

The effectiveness factors of the 2nd and 0. 5th
order reactions have their own nonlinear properties.
As shown in Fig.2 (b), there is a phenomenon that
the five curves of effectiveness factor by decomposi-
tion solution for 2nd order reaction are under that of
numerical one, that is, the solution of effectiveness
factor by the decomposition method approaches the
numerical one from lower value direction. However in
Fig.2 (c), the curve of the 3 terms decomposition so-
lution is above that of the numerical solution, but the
curve of the 4 terms decomposition solution appears
under it. In the case of Thiele modulus above 2, the
decomposition solution with 3 terms is unstable, this
is not shown in Fig.2 (c¢).

In this paper, the effectiveness factor is calculat-
ed by using the concentration gradient value at x =1,
where the boundary condition is ¢ =1, so the error of
the concentration derivative at this end point is maxi-
mum, and the difference between the decomposition
If
the effectiveness factor is calculated by the integral
method, as shown in Eq. (29), the difference could
have been reduced.

1
J' 9:1n+1,nd‘r 1
0 n
7 = ——-__RI:l = j00m+1,"dx.

The value calculated by Eq. (29) is relative to the in-
tegral area under the curves in Fig. 1. This will be

solution and the numerical one is maximum too.

(29)

discussed in another paper.
5 Conclusions

The Adomian decomposition method has been

successfully used to solve the nonlinear model of the
second and half order reactions for a coupled diffusion-
reaction process in a catalyst pellet. For the simple
nonlinear differential equation, an approximate ana-
lytical solution, which can give continuous values of
dimensionless concentration and effectiveness factor,
can be obtained by the decomposition method. At
lower values of ¢, the formula of the decomposition
solution with 3 terms is easy to derive and yields a
satisfactory agreement with the numerical solution; at
higher values of ¢, the reasonable agreement between
the numerical solution and the decomposition one is
achieved as the number of terms in the decomposition
method increases, for instance, m =35. Once the de-
composition solution is unstable, the numerical one by
finite difference method is not easily convergent; in
this case, the accuracy is difficult to be judged.
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